FEM analysis of a new miniplate: stress distribution on the plate, screws and the bone
نویسندگان
چکیده
OBJECTIVES Non-homogeneous force distribution along the miniplates and the screws is an unsolved question for skeletal anchorage in orthodontics. To overcome this issue, a miniplate structure was designed featuring spikes placed on the surface facing the cortical bone. The aim of this study was to examine and compare the force distribution of the newly designed plate-screw systems with the conventional one. METHODS A model of bone surface with 1.5 mm cortical thickness, along with the two newly designed miniplates and a standard miniplate-screw were simulated on the three-dimensional model. 200 g experimental force was applied to the tip of the miniplates and the consequential effects on the screws and cortical bone was evaluated using three-dimensional finite element method. RESULTS As a result of this finite element study, remarkably lower stresses were observed on the screws and the cortical bone around the screws with the newly designed miniplate when compared with the conventional one. CONCLUSION The newly designed miniplate that has spikes was found effective in reducing the stress on and around the screws and the force was distributed more equivalently.
منابع مشابه
Thread Pitch Variant in Orthodontic Mini-screws: A 3-D Finite Element Analysis
Orthodontic miniscrews are widely used as temporary anchorage devices to facilitate orthodontic movements. Miniscrew loosening is a common problem, which usually occurs during the first two weeks of treatment. Macrodesign can affect the stability of a miniscrew by changing its diameter, length, thread pitch, thread shape, tapering angle and so on. In this study, a 3-D finite element analysis wa...
متن کاملAn investigation of tensile strength of Ti6Al4V titanium screw inside femur bone using finite element and experimental tests
The geometric optimization of orthopedic screws can considerably increase their orthopedic efficiency. Due to the high geometric parameters of orthopedic screws, a finite element simulation is an effective tool for analyzing and forecasting the effect of the parameters on the load-bearing capacity of different types of screws and bones. Thus, in the present study, the tensile strength of a typi...
متن کاملمدلسازی و تحلیل مکانیکی صفحه تثبیت استخوانی کامپوزیتی فسفات کلسیم دوفازی/ ابریشم برای درمان شکستگی استخوان تیبیا
The purpose of this paper was modeling and mechanical analysis of the biodegradable biphasic calcium phosphate/silk (BCP/Silk) laminated composite bone plate for fractured tibia healing; to this aim,ABAQUS 6.13 was employed for modeling and mechanical analysis. First, the tibia bone was considered based on the anthropometric measurements of an average person as a two-layer cylinder; the inner p...
متن کاملA Three Dimensional Numerical Interaction Model for the Fixation of Mandibular Fractures
Two and three dimensional finite element models (FEM) were developed to simulate the behavior of a fractured jaw bone and the fixation materials. Mini-plates with various geometric and material properties and screw combinations were considered. Their effects on the variation of maximum stress contours were investigated. The geometric and material properties of the plate, screw and bone were see...
متن کاملEvaluating the impact of length and thread pitch on the stress distribution in dental implants and surrounding bone using finite element method
longevity of osseointegrated implants are intensely influenced by biomechanical factors. Control of these factors prevents mechanical complications, which include fracture of screws, components, or materials veneering the framework. In this study, the impact of length and threads pitch of dental implants on the stress distribution and maximum Von Mises stress in implant-abutment complex and ja...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2012